Thomas Young’s theory of the arch.
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an iron arch of 600 feet over the

"~ Thames in London
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The main lines of the development of arch theory are well known. The works of
Poncelet (1852) and Winkler (1879) give a good review of the early theories from
the XVIIth to the mid-XIXth century. Those theories refer to masonry arches (of-
ten called “rigid”). The theory of the “clastic” arch developed during the XIXth
century and was applied first to iron and wooden arches; after the 1880% it was
applied to any kind of arches. A detailed study of the history of the elastic theory
may be found in Mairle (1933) and a good review of the fundamental lines in
Hertwig (1941), Timoshenko (1953) and Charlton (1982). Heyman (1972, 1998)
has studied the evolution of arch theory within the frame of limit analysis, and
has placed it rigorously within the general frame of the modern theory of struc-
tures. A recent article by Kurrer (1997) covers both the history of rigid (masonry)
and elastic theories. Finally, Foce (Becchi and Foce 2002) has contributed a new
historical review and, more important, has compiled a comprehensive bibliogra-
phy of the primary sources.

However, if the overall picture is clear, some details should still be investigat-
ed. Little parts of the canvas are still blurred and certain contributions, steps on
the ladder of progress, have been forgotten. This is the case with the contribution
of Thomas Young (1773-1829) to arch theory, which is not even mentioned in
any of the works cited above. The omission is amply justified by Young’s obscure
prose and his eccentric way of publishing. His work, though considered impor-
tant by some eminent contemporary engineers like Rennie, was not understood
and rapidly forgotten. Young’s arch theory exerted apparently no influence. But it
is a fact that he had a deep understanding of arch behaviour (his theory was basi-
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cally correct) and was well ahead from his contemporaries. The culmination of
his work on arches is the article Bridge for the Supplement to the fourth edition
of the Encyclopaedia Britannica, published in 1817. In it he exposed first the the-
ory and then, as a tour de force, applied it to the analysis of Telford’s unbuilt de-
sign for a great iron arch of 600 feet over the Thames (1800).

To put in context the work of Young a few words should be said about the
state of the art of arch theory ca. 1800. Telford’s design episode will be also re-
vised because it served as a “touchstone” for the state of this theory in Britain
and, also, because it could have triggered Young’s interest in arch bridge design.

Arch theory circa 1800

At the beginning of the XIXth century there were two approaches to arch analy-
sis: 1) the “equilibration theory”, and, what we may call, 2) the “point of rupture”
theory. The first originated and developed in Great Britain and the second in
France. Both theories were considered essentially as different approaches until
the 1840’ when, thanks to the correct definition of the concept of “line of thrust”
it was understood that both theories were equivalent.

Equilibration theory

The equilibration theory originated in Hooke’s analogy (1675) between hanging
chains and arches: “As hangs the flexible cable, so but inverted will stand the
rigid arch”. The statics of cables and arches is essentially the same, and the form
of the catenary is the ideal form for an arch of uniform thickness. The architect
or engineer following Hooke’s approach would like to make the arch of the same
form of the corresponding hanging chain. The matter was tackled mathematically
by many English mathematicians and engineers during the XVIIIth century, and
applied to arch analysis, for example, by Emerson (1754) and Hutton (1772,
1812). There were two basic problems: 1) to find the intrados for a given extra-
dos; 2) to find the extrados for a given intrados, figure 1 (a) and (b).

In the case of a bridge, the load on the chain (the arch ring) was the weight of
the arch plus the load of the filling and road. Being the last sensibly horizontal,
the form of the arch should be such that the load in every point is proportional to
the vertical distance of this point to an horizontal line of extrados. In 1801 Robi-
son proposed a hanging model, figure 1 (¢), with rods representing the load,
which expressed clearly the philosophy of bridge design following the equilibra-
tion theory. The physical interpretation of the equilibration arch is a series of
smooth voussoirs with the joints always normal to the curve of intrados. Both ap-
proaches lead to the same result: a certain fixed form (the intrados) for the trans-
mission of the thrusts, the curve of equilibrium. The theory gives no information
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Figure 1

The two main problems of the equilibration theory: (a) To find the curve of extrados for a
given intrados; and (b) to find the form of a intrados for a given extrados. (Hutton 1812).
In figure (c) the model suggested by Robison in 1801 to solve the second case (Young
1807)

about the thickness of the arch and does not explain common phenomena as the
craking of arches. Of course, the equilibration theory permits to calculate the
thrust of the arch, which is the reaction at the end of the inverted chain, known in
position, magnitude and direction. However most English contributions did not
tackle the problem of buttress. oo

The problem is that any change of the load will distort the curve of equilibri-
um, which will fit no longer with the built arch (and Robison’s model may be
used to check this assertion experimentally). The case is specially serious in
bridge design, a bridge being precisely an structure for the passing of moving
loads. Besides, the curves obtained were difficult to construct with simple geo-
metrical methods, and therefore not adequate for the common practice of build-
ing. However, these inconvenients did not deter engineers and mathematicians
who continued to expend a lot of labour and ingenuity in studying every conceiv-
able situation for arches, first, and then for domes and vaults.

“Point of rupture” theory

The second theory originated in France and La Hire (1712) made the first contri-
bution. The approach is not directed to the study of the form of the arch but to
obtain its thrust in order to calculate the depth of the abutments. La Hire ob-
serves that in a collapsed arch or barrel vault the inferior part remains united to
the abutment, marking the “point of rupture” of the arch or barrel vault. The
thrust must pass through this point and be tangent to the intrados and, once locat-
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ed the points of rupture, the calculation of the thrust follows easily establishing
the equilibrium of the upper part. La Hire’s theory was modified by Bélidor
(1729) who fixed the position of the point of rupture half way between the crown
and the springings, and displaced the thrust to the middle of the joint. This modi-
fication was interpreted “physically” as a non-friction theory, the thrust resulting
from the weight of the upper part acting as “wedge” without friction against the
planes of joint. But, the objective remained the calculation of the thrust in order
to design the abutment. Bélidor’s method, though incorrect, gave buttress depths
which agreed well with the experience and was almost universally accepted in
the continent.

The essays of Danyzy (1732) demonstrated the impossibility of sliding and
the formation of hinges between the stones. Apparently without knowing them,
Couplet (1730) developed-the first arch theory considering friction which was
completed by Coulomb (1773) who explained the method to be followed (em-
ploying the method of maxima and minima) to locate correctly the position of the
joint of rupture. Coulomb’s memoir was forgotten for almost fifty years, until
Audoy (1820) resolved the equations for the most usual profiles of arches. Then,
Audoy calculated the abutments and realized, with comparison with the usual
measures, the necessity of increasing the calculated thrust to obtain an adequate
degree of safety.

In conclusion, the “French theory” was concerned primarily with the determi-
nation of the point of rupture (defining the collapse mechanism, the other two
hinges located in the crown and in the springings) in order to calculate the thrust
against the abutments for an arch of a given form, and was not concerned either
with the design of the arch or with the internal forces in the arch.

“Line of thrust” theory

Apparently the equilibration theory and the point of rupture theory were com-
pletely different. A new idea was needed to obtain a complete understanding of
arch behaviour: this is the concept of “line of thrust”, which appeared almost
simultaneously in England (Moseley 1835, 1838) and France (Méry 1840). The
line of thrust is the locus of the point of application of the thrusts (internal forces
or stress resultants) for a given family of joints. The thrusts need not be normal to
the joints (they only should be contained within the friction cone) and the draw-
ing of the line permits to check the main statement about the material: masonry
must work in compression and hence the line of thrust must be contained within
the arch. Both Moseley and Méry related the lines of thrust with the formation of
collapse mechanisms, comparing their analysis with the results of the collapse
experiments of Boistard (1810), and the observations of Gauthey (1809). The
concept, then, results in a fusion of the two theories. The approach produced an
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cnormous advance in the understanding of arch design and analysis. For exam-
ple, the study of lines of thrust made “evident”, not only the existence of two
limits for the value of the horizontal thrust of a line contained within the arch (al-
ready predicted by Coulomb), bui, also, and this was crucial, that between these
two extreme situations an infinite number of lines of thrust may be drawn within
the arch. The indeterminacy of the position of the line of thrust “tortured” engi-
neers during the whole second half of the X1Xth century and the solution only
came with the Fundamental Theorems of Limit Analysis (Heyman 1995). From
the practical side, the concept of line of thrust leads easily to graphical statics
(equilibrium analysis) and supplied architects and engineers with a simple tool
for the practical calculations of arches of any form under any system of loads of
arches. )

Then, the “line of thrust theory” emerges almost without warning, with a re-
markable degree of perfection. It is not an uncommon phenomenon in the history
of science or applied science: the time was ripe for a new discovery. However,
looking at the painful development of arch_theory during the XVIIIth century,
some kind of transition would have been expected. This paper will show that
some 20 years before Moseley and Méry, Thomas Young not only had the idea of
line of thrust and applied it correctly to symmetrical arches, but that he used it,
also to study the stability of arches under unsymmetrical loads, and made a com-
pletely correct analysis of some “real” arch bridges, an analysis that will be ac-
cepted today as completely correct.

Improvements in the Port of Londen: Telford’s design of an iron arch
of 600 feet span

In the history of the theory of structures it is not uncommon that certain episodes
have led to expertises which have marked a turning point in the development of
the theory. This was the case in 1742 when Pope Benedict XIV asked for exper-
tises to elucidate the safety of Saint Peter’s dome. The reports written by Poleni
and the three mathematicians (Jacquier, Le Seur and Boscovich) marked a turn-
ing point in the analysis of real domes (Straub 1952). In other cases, the problem
proved too difficult and the expertises served mainly to call the attention to the
insufficient development of the theory, and can trigger new theoretical develop-
ments. This was the case with the discussions relating the design of the pillars
and dome of Sainte-Genevieve, today the French Pantheon. This was also the
case with Telford’s design for an iron arch of 600 feet (183 m) over the Thames in
1800. The story has already been exposed in detail by Dorn (1970), Ruddock
(1979) and Skempton (1980), and will be summarized briefly in the following
lines.
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In the 1790’ the growth of trade made necessary a large reform of the Port of
London. In the years 1798 and 1799 several proposals were made to replace the
old London Bridge in order to admit the passage of cargo ships. All the proposals
were influenced by the success of the iron bridge built at Sunderland in 1796
with a span of 236 feet (72 m); this was a proof of the feasibility of using cast
iron in the building of large bridge arches. The Select Committee formed to
study the reform advertised for designs for a new bridge with 65 feet height
above high water, suitable for passage of 200 ton ships. Several designs were pre-
sented: Thomas Wilson (an iron bridge of three arches, 220, 240 and 220 feet
span), Ralph Dodd (a monumental masonry bridge) and Telford and Douglass
(three designs of three and five iron arches). George Dance proposed a draw-
bridge. All the projects were prepared for publication in the Third Report of the
Select Committee of 28th July 1800.

Then a report by William Jessop attracted the attention of the Committee. Jes-
sop argued that to allow the passage of cargo ships the river should be dredged
from the actual deep of 6 to 10 feet to 13 feet in the middie and that to maintain
the velocity of water the river should be narrowed to 600 feet, constructing em-
bankments and warves (Ruddock 1979, 156). The reduction to the span to 600
feet prompted Telford and Douglass (though the design of the bridge must be at-
tributed to Telford") to present in the autumn of 1800 a new project with a single
cast-iron arch covering the whole span. The design arrived too late to be includ-
ed in the Third Report, but a plate with the plan and elevation (Fig. 2) and a re-
port and estimates were issued in a Supplemental Appendix. A model of the
bridge was also made. The Committee expressed his admiration for the new
design:

The obvious advantages which would be obtained if the Communications could be ef-
fected by Means of Single Arch, as well as the Magnificence of the proposed Struc-
ture, appeared to give the . . . Design a particular Claim to the Notice of Your Commit-
tee; yet the Attempt was of so novel a Nature, that they thought it absolutely necessary
for their own Information, as well as for the Purpose of affording some Grounds upon
which the House might hereafter form their Judgement as to its Expediency, to request
the Opinions of some of the Persons most eminent in Great Britain for their theoretic
as well as Practical Knowledge of such Subjects. (Fourth Report 1801)

The Committee draw up twenty-one questions to be sent with the design and
two additional explanatory drawings of the ﬁ*aming of the ironwork (Fig. 3) to a
list of eminent experts.? The experts selected included three groups of persons:
scientists and mathematicians, eminent engineers and iron makers. The strategy
of the Committee was to seek the correct answers combining the judgements of
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Figure 3 :
Explanatory drawings of Telford’s design. “Plan of framing shewing how the ribs may be
put together”. (Fourth Report 1801) ’




Thomas Young’s theory of the arch 197

all these approaches. In fact, it was Telford himself who drafted the questions
while corresponding with several of the selected experts. It is obvious that he
dedicated a lot of attention to the matter (he made four drafts) and the list consti-
tutes an exhaustive questionnaire in which all the matters relating to the design of
a bridge are considered (the list is reproduced in an Appendix at the end of this
paper). The questions were sent early in April 1801 and nearly all replies were
dated at the end of this month. The questions and answers, together with the new
drawings, were issued in the Fourth Report on 3" June 1801.

The answers received must have supposed a great deception both to the Com-
mittee and to Telford himself. There is no space here to enter in detail in the mat-
ter (for a discussion see Dorn 1970; brief comments in Skempton 1980) but it
was evident that the state of knowledge of structural theory was insufficient to
answer the precise and intelligent questions posed by Telford. Quoting Peacock
(1855, 422): “The answers which were given were singularly humiliating to the
pride of philosophy: they were not only.altogether at variance with each other,
but in very instance incomplete and unsatisfactory”.

Telford pressed forward in favour of his design and in the summer of 1801 an
splendid engraving with a large view of the design was published, which attract-
ed a lot of attention from the public. The same year, he published, also, an article
in the prestigious Philosophical Magazine. Still a year later Telford apparently
have received notes of congratulation from the King (Ruddock 1979), but the
proposal was finally abandoned and eventually the new London Bridge was built
as a traditional masonry bridge of three arches. This must have been an enormous
deception to Telford and maybe a sign of this is that no mention is made of this
episode in his autobiography (Rickman 1838).

The reasons for the abandon of such a magnificent design were not made ex-
plicit. It is a fact that most of the experts have a favourable opinion as to feasibil-
ity of the design, Question XX of the list, though they were unable to justify it.
Both Ruddock and Skempton believe that the main reason would have been the
cost and complexity of building the long approaches to the bridge. However
Dorn (1970), though considering also the economical aspect, says that “a suspi-
cion lingers that the project was undermined by the inability of the Committee’s
respondents to provide any convincing assurance that practice harmonised with
theory in Telford’s majestic design”. Indeed, the questions were so clear and
straightforward that the inability to be answered would have caused suspicion in
any cultivated man.

The whole episode provoked an awakening in the interest in arch theory in
Britain. Some of the respondents published articles and books on the subject.
Hutton urged to make a reprint on 1801 of his treatise on bridges of 1772 and in
his Tracts of 1812 included a new improved and revised edition of it. Southern
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(1801) published a paper on the equilibrium of arches. The same year Atwood
published A Dissertation on the construction and properties of arches, which was
followed in 1804 by a Supplement. In 1811 an anonymous correspondent pub-
lished in the Philosophical Magazine a paper with the expressive title “Some Ac-
count of the different Theories of Arches or Vaults, and of Domes, and of the Au-
thors who have written on this most delicate and important Application of
Mathematical Science” (Some Account 1811). In this paper, maybe for the first
time in England, a detailed account of the French theories of arches is given.
However, none of this contributions supposed a remarkable advance on the state
of the theory which would have permitted to answer the 21 questions posed by
Telford on bridge analysis and design.

Thomas Young’s theory of the arch

Against this background should we see Thomas Young’s contribution to arch the-
ory. He was interested in arch theory for a period of fifteen years, between 1801
when he accepted to deliver the Lectures for the Royal Institution (this marks the
beginning of his interest on the Mechanical Arts), and 1816 when he finished
writing his article “Bridge” published the next year in the Supplement to the
fourth edition of the Encyclopaedia Britannica. An study of the evolution of
Young’s studies on arches, though concentrated only in two publications, the Lec-
tures of 1807 and an obscure paper “On the structure of covered ways”, pub-
lished anonymously in 1807, will require more space than is allowed in the pre-
sent book. Therefore we will concentrate in the article “Bridge” which contains
his whole theory on arches.?

The article was included by Peacock (1855) in his edition of the Miscella-
neous works of the late Thomas Young, but with some important modifications.
First, he reduced considerably the number of figures; only the first 7 figures of
the first of the three plates of the original article were included, which form the
upper part of the first original Plate reproduced in figure 4. Secondly, he elimi-
nated the comments of the figures included. And, finally, the sixth and last sec-
tion of the article was completely suppressed. Particularly, this last suppression
makes difficult to understand some of Young’s propositions which were applied
in this section to the analysis of the bridges of Southwark and Waterloo. Howev-
er, as it is much easier to consult Peacock’s edition (which, besides, has been
reprinted in 2003) than the original article in the Encyclopaedia, in what follows
all the references within brackets are to the pages in the Miscellaneous works, ex-
cept when otherwise specified.

Young is very explicit about his intentions, and the article begins:
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First Plate of the article “Bridge” written by Thomas Young for the Supplement to the 4th
Edition of the Encyclopaedia Britannica. (Young 1824 [1817])
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The mathematical theory of the structure of bridges has been a favourite subject with
mechanical philosophers; it gives scope to some of the most refined and elegant appli-
cations of science to practical utility; and at the same time that its progressive im-
provement exhibits an example of the very slow steps by which speculation has some-
times followed execution, it enables us to look forwards with perfect confidence to that
more desirable state of human knowledge, in which the calculations of the mathemati-
cian are authorised to direct the operations of the artificer with security, instead of
watching with servility the progress of his labours. (194)

The criticism to the actual situation of impotence of the theory to explain the
normal practical procedures or to check the feasibility of new designs is clearly
stated, and so it is the ambitious objective of formulating a theory which could
put an end to this state of affairs, harmonising theory and practice.

The article is divided in six parts. The first three contains the theory of arch-
es: 1) “Resistance of materials”, 2) “The equilibrium of arches” and 3) “The ef-
fects of friction”. The fourth part contains some “Barlier historical details” (a dis-
cussion on the origin of the arch and a review of “the most important operations”
in bridge building, extracted from Smeaton Reports). The fifth part contains “An
account of the discussions which have taken place respecting the improvement of
the port of London”. In fact, this part is dedicated to answer in detail to the 21
questions of the Select Committee, applying the theory previously exposed in the
first three parts. Finally the sixth part is “A description of some of the most re-
markable bridges which have been erected in modern times”. In this part, after a
brief history of the iron bridges, the theory of arches is applied to analyze in de-
tail the bridges of Southwark and Waterloo. In all, of the 23 pages of the article,
19 pages are dedicated to strictly structural matters.

Resistance of materials

In this part Young particularize his theory of “passive strength” already expound-
ed in his Lectures of 1807 with a view to its application to arches. Young makes
an effort to explain the theory in rigorous terms. The method used by Young is
the “classical” method of stating a proposition (named alphabetically from A to
Z) and then demonstrating it. This way of exposition makes difficult to follow the
general line of reasoning and results particularly exasperating to a modern reader.
The propositions though formulated in a general manner are directed to study the
arch problem: a curved structure functioning mainly in compression.

First he states the proportionality between tensions and deformations and to
Justify this he expounds a theory of cohesive and repulsive molecular forces and
states that even if the law of this forces is not linear (fig. 1 in figure 5), the effect
will be proportional for a small “change of dimensions”. (196)
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Figure 5

Drawings on “Resistance of materials”. Young is concerned with the “compression” or
“extension” of a joint which remains plane. after deformation. He treats deformations not
stresses. (Detail of Figure 4 above)

He then treats the eccentric compression 6f a block and states and begins con-
sidering the limit position of an eccentric force so that all the section remains in
compression and the corresponding increase in the stresses. However, the way he
expressed the problem is as follows: “The strength of block or beam must be re-
duced to one half, before its cohesive and repulsive forces can both be called into
action”. A modern engineer may have no difficulty in interpreting this: Young is
obviously referring to the “middle third”? concept and the maximum stress is dou-
ble as the mean stress. To demonstrate this, Young assumes explicitly that plane
sections remain plane after the deformation. It follows that the deformations
(compressions or extensions) varies linearly and “consequently the forces may
always be represented, like the pressure of a fluid, at different depths, by the
ordinates of a triangle; and their result may be considered as concentrated in the
centre of gravity of the triangle, or of such of its portions as are contained within
the depth of the substance.” (197) Here Young is struggling with the concept of
stress and he uses the analogy of the pressure of a fluid. However he tries always to
speak in terms of deformations, the “forces” or “pressures” being always propor-
tional to them, as stated in the first proposition, and not of stresses (fig. 2 in figure 5).

The next proposition states that “the compression or the extension of the axis
of the block or beam is always proportional to the force, reduced to the direction
of the axis, at whatever distance it may be applied”. (198) The deformation of the
axis is always equal to the mean deformation, produced by the normal compo-
nent of the force applied in the middle of the section. The transverse component
of the force will be resisted by “lateral adhesion” (shear) and if the force is nor-
mal to the axis “the length of the axis will remain unaltered”.
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Then Young proceeds to locate the neutral point for this general force placed
at any distance:“The distance of the neutral point from the axis is to the depth, as
the depth to twelve times the distance of the force, measured in the transverse
section”. In an algebraical form

a?
12y

z =

M

where z is the distance of the neutral point from the axis, @ is the depth of the
section and y is the distance of the point of application of the force to the axis.
Young’s demonstration is based in the proportionality of the stress resultants and
the triangular form of the stress blocks; it is not easy to follow even knowing that
it is correct. .

The next proposition tries to relate the increase of the normal stresses in terms
of the distance of the force from the axis: “The power of a given force to crush a
block, is increased by its removal from the axis, supposing its direction unaltered,
in the same proportion as the depth of the block is increased by the addition of
six times the distance of the point of application of the force, measured in the
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Figure 6
Young’s propositions on “Resistance of materials” expressed in modern terms (stresses).
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transverse section”. (199) Young is referring to the increase of the stresses due to
the eccentrity of the load. In modern terms, if we call ¢ the mean compressive
stress produced by the force applied in the center of the section, the removal of
the force at a distance y will produce 4 stress ¢ given by

a+ 6y
c=0|—— 2
a

Young demonstrates the assertion, again, for similar triangles (fig. 3 in figu-
re 5). Therefore, now we are in the situation to ascertain the “strength” (stress
distribution) of any section acted by any force located at any distance, figure 6.

On the equilibrium of arches

The next Section of the article treats the equilibrium of arches, i.e. it is an study of the
definition and mathematical properties of the curves of equilibrium (lines of thrust),
but with a view to their application in the analysis and design of actual bridges.
DEFINITION OF LINE OF THRUST: To study the equilibrium of arches Young “pro-
ceed to inquire into the mode of determining the situation and properties of the
curve of equilibrium, which represents, for every part of a system of bodies sup-
porting each other, the general direction of their mutual pressure”. (204) Here is,
twenty years before the official date of 1835, the definition of line of
thrust. Young has liberated himself from the, straitjacket of the equilibration theo-
ry (vertical loads, thrust following the line of intrados) and speaks freely of the
equilibrium of a system of bodies in contact.*

Young is well aware that the form of the curve of equilibrium (in what follows
we will use this term) depends on the family of planes of joint considered: . . . it
is obvious that the forces . . . may vary very sensibly in their proportion if we
consider the joint operation on a vertical or on a oblique plane”. (205) However,
he immediately remarks that “ . . . if the depth of the substance be inconsiderable,
this difference will be wholly imperceptible, and in practice it may generally be
neglected without inconvenience; calculating the curve upon the supposition of a
series of joints in a vertical direction”. (205)

He explains, however, the method to study any particular joint: “if we wish to
be very accurate, we must attend to the actual direction of the joints in the deter-
mination of the curve, and must consider, in the case of a bridge, the whole
weight of the structure terminated by a given arch stone, with the materials
which it supports, as determining the direction of the curve of equilibrium
where it meets the given joint . . . this consideration being as necessary for
determining the circumstances under which the joints will open, as for the more
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imaginary possibibility of the stones sliding upwards or downwards”. (italics are
mine)

Young, then, has a perfect grasp of the concept of line of thrust but, instead of
losing himself in the mathematical intricacies of the problem (considering differ-
ent families of planes of joint); he considers a good approximation the assump-
tion of vertical joints, but bearing in mind the possibility of studying in more de-
tail any particular joint.

Then Young formulates a series of propositions addressed to apply his ideas of
curves of equilibrium to different types of loads.

CURVE OF EQUILIBRIUM IN A FLAT ARCH: He begins with the straight arch, the
platebande, and deduces that the form of the curve of equilibrium must be para-
bolic. Young uses this simple éxample of the platebande to make clear his ideas
of the curve of equilibrium. He remarks that the thrust in the central joint must
be horizontal and, then, chooses a system of vertical joints “which is the only
way in which we can easily obtain a regular result”. (206) For a block cut at dis-
tance x from the middle, calling the ordinates y, as the weight is proportional
to x, it is evident that x = m —)\, and integrating, ('/,)x* = my, which is the equa-
tion of a parabola. Now Young alludes to the conventional representation of this
line as an inverted funicular polygon ( as we call it nowadays): “It is usual in
such cases to consider the thrusts rectilinear throughout, and as meeting in the
vertical line passing through the centre of gravity of each block; but this mode of
representation is evidently only a convenient compendium”.

(GENERAL EQUATION OF THE CURVE OF EQUILIBRIUM: In the next proposition Young
gives the general equation of the curve of equilibrium for any symmetrical verti-
cal distribution of the load, considering vertical joints: “In every structure sup-
ported by abutments, the tangent of the inclination of the curve of equilibrivm to
the horizon is proportional to the weight of the parts interposed between the giv-
en point and the middle of the structure”. (207) He notices that in bridges the
loads may not act entirely in a vertical way, some materials exerting a lateral
pressure also; due to the symmetry, this does not affect the general truth of the
assertion, though the form of the curve of equilibrium will vary slightly. He dis-
courages the use of such materials for the filling.
Then, we have:

f = mi— Y 3)
wax —mli = ——
d

X
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curve of equilibrium A

H |

Figura 7

.
Line of thrust or curve of equilibrium for a symmetrical arch, which supports a vertical
load, considering vertical joints.

I

where “w is the height of uniform matter, pressing on the arch at the horizontal
distance x from the vertex, ¢ is the tangent of the inclination of the curve of equi-
librium (tan), y is the vertical ordinate, and m is a quantity proportional to the lat-
eral thrust, or horizontal thrust”. If we consider a vertical load, m is equal to the
horizonal thrust, figure 7.

Young now studies the properties of curvature of the curve of equilibrium in
relation with the load and the inclination of the thrust and extracts two corollaries
relating to circular and parabolic curves of equilibrium: “The radius of curvature
of the curve of equilibrium is inversely as the load on each part, and directly as
the cube of the secant of the angle of inclination to the horizon”. (208)

The general expression of the radius of curvature is;

(dz)’
;=
dxd?y
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where dz is a differential element of the curve (following Young’s notation). But
mdy = fwdx and it follows m d*v = w(dx)*; dz = dx\/(1 + %), and subsituting in
the above equation of the radius,

<

11

3 om L3 om
= I+ =— 1+ (tan 0)?)? = — (sec o)’ 4)
W w

w
and at the crown, seca =1, w = W

m
o= . (5)

w

HORIZONTAL EXTRADOS AND INTRADOS TERMINATED WITH THE CURVE OF EQUILIBRIUM:
This was the usual assumption for bridges in many previous arch treatises. He
expresses the result in the form of a proposition: “For a horizontal extrados, and
an intrados terminated by the curve itself, which, however, is a supposition mere-
ly theoretical, the equation of the curve'is

r+EVV-at

a

x=Vmln (6)

In this case the load w = y and, for a depth of the arch « at the keystone, Young
obtains the equation of the abscises in function of the ordinates because the
integration is much more easy. The result is correct and obviously to obtain
the different points of the curve for different ordinates only a table of neperian
logarithms is needed. However, Young makes clear that “such a calculation is
by no means so immediately applicable to practice, as has generally been sup-

Figure 8

Curve of equilibrium for a load which is proportional to the vertical distance to a horizon-
tal extrados. In a “typical” arch, maybe of circular form, if the curve pass through the mid-
dle of the joints at the keystone and abutments (Young’s usual assumption), the curve lies
completely outside of ring of normal thickness.
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posed; for the curve of equilibrium will always be so distant from the intrados
at the abutments, as to derange the whole distribution of the forces con-
cerned”. (209) In fact, this approach contradicts the main objective of Young,
which is to free the curve of equflibrium from the “straitjacket” of the intra-
dos. Besides, if we obtain this curve, passing through the middle of the joints
at the crown and the springings (Young’s usual assumption), the form of the
curve of equilibrium differs so much from that of the arch as to be completely
useless, figure 8.

PARABOLIC LoAD: This is the most important proposition of this part. Young real-
izes that to handle in a convenient way the different curves for a given load, this
load should have a mathematical definition which leads to a simple integration.
Also, it should be sufficienlty flexible to adapt to the real loads in a bridge and to
take into account the inclination of the joints, if considered necessary. He decides
that a parabolic load fulfils both conditions and gives the corresponding equation
: “If the load on each point of an arch be e¢xpressed by the equation w = ¢ + bx=,
the equation for the curve of equilibrium will be

1 |
my = — ax* + —— bx*”, 7N
2 12

The whole load W = fwdx = ax + (1/3)bx*. Now, m (dy/dx)= ax + (1/3)bx?, and
integrating the above cited expression is obtained. Young cites explicitly its ad-
vantages: “This expression will, in general, be found sufficiently accurate for cal-
culating the form of the curve of equilibrium in practical cases; and it may easily
be made to comprehend the increase of the load from the obliquity of the arch-
stones”. (210)

Given the ordinate y at the abutments (that is the height of the curve of equi-
librium between its springings and the point of horizontal tangent at the joint of
the keystone) it is easy to obtain the value of the horizontal thrust m. And at the
keystone w = g and the radius of curvature is 7 = m/a as the secant of zero is the
unity.

LOAD TERMINATED BY A CIRCULAR OR ELLIPTICAL ARC: He gives the equation of the
curve of equilibrium for a load defined by a horizontal extrados terminated by a
circular or elliptical intrados. (211) This is the case of'a masonry bridge when the
filling has the same specific weight as the arch-stones, which will be in a real
bridge only a very crude approximation. “When the load is terminated by a circu-
lar or elliptical arc, w=a + nb—n Vb? —x? and
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I 1
my = > (a + nb) x> - 3 nb* xarcsin % -
17 | ) EI
~5 nb? Vb — x1+ 5" (b —x2)2 + 3 nb*”.

The expression of the load may be immediately deduced for a circular form
and the coefficient n represents only an stretching to obtain an ellipse (for the
circular form # = 1). Young makes correctly the corresponding integrals, obtain-
ing the above cited mathematical expression. The radius of curvature at the ver-
tex will be again » = m/a. Young will apply later this expression in the calculation
of the curve of equilibrium of Blackfriars Bridge.

DISCUSSION ON CURVES OF EQUILIBRIUM WITHOUT FRICTION: Young states that the
condition for the equilibrium of'an arch without friction is that “a curve of equi-
librium, perpendicular to all the surfaces of the Joints, must be capable of being
drawn within the substance of the blocks”. (212) This is, of course, the essence of
the equilibration theory and Young dedicates two pages to criticize this, preparing
the reader for his last proposition on the effects of friction. In fact, in this para-
graph, he will discuss the formation of hinges, the corresponding diminution of
“strength” (the increase of the stresses) and the way of collapse of masonry

bridges. :
He asserts that, in practice, the possibility of failure by sliding is almost im-
possible, but “if the curve [of equilibrium] . . . be directed to a point in its plane

beyond the limits of the substance, the joint will open at its remoter end, unless it
be secured by the cohesion of the cements, and the structure will either wholly
fall, or continue to stand in a new form.” (212) It appears that for the first time
there is established a relationship between line of thrusts and the formation of
hinges, and the possibility of an arch to adapt to the movements by cracking.
Young does not expand the statement but refers the reader to the fig. 5 in figu-
re 4. (In the Miscellaneous papers Peacock eliminated all the comments on the
plates.) He says that, in this situation, “the Joints in the neighbourhood of D [and
E] will be incapable of resisting the pressure in the direction of the curve CD,
and must tend to turn on their internal terminations as centres, and to open exter-
nally” (Young 1824, 520).

Then Young comments the reduction of strerigth when the curve of equilibrium
touches the limit of the arch; in this situation the stress is four times higher as the
mean stress, equation (2). But Young is well aware that this is in the hypothesis of
plane deformation and the existence of cohesion (tensile strength) and that in
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reality “the diminution of strength will probably be considerably greater than is
here supposed, whenever the curve approaches to the intrados of the arch”. (213)

Finally, he discussed the problem of the process of collapse of a real bridge,
fig. 6 in figure 4. He is not considering a rigid material and, therefore, the defor-
mations are not concentrated exclusively at the hinges (though the cracks at the
haunches are clearly drawn). In fact, he is trying to explain the results of some
experiments reported by Robison (1801) with the help of his new ideas on curves
of equilibrium.

EFFECT OF FRICTION: In this part Young resumes the main consequences of fric-
tion in respect to the stability of arches and of masonry structures in general:
“The friction or adhesion of the substances, employed in Architecture, is of the
most material consequence for insuring the stability of the works constructed
with them”. (214) With respect to arches, he realized crucial importance of fric-
tion to let the curve of equilibrium move, within the arch. The corresponding (and
last, of the theory of arches) proposition resumes the main aspects: “The joints of
an arch, composed of materials subject to friction, may be situated in any direc-
tion lying within the limits of the angle of repose [friction] .. .” (215)

He concludes “that the direction of the joints can never determine the direc-
tion of the curve of equilibrium crossing them, since the friction will always en-
able them to transmit the thrust in a direction varying very considerably from
the perpendicular”, (216) though he adverts also, that sometimes the true direc-
tion of the joints should be taken into account, as they affect the form of the
curve of equilibrium and the direction of the thrusts and in this case: “. .. with
respect to any particular joint, of which we wish to ascertain the stability inde-
pendent of the friction, it would be desirable to collect the result of the ele-
ments, of which that curve is the representative, with a proper regard to its di-
rection.”

Analysis of Telford’s design for London Bridge

The objective of Young in writing the article Bridge was not to give another
mathematical discussion on the theory of arches, similar to that of Hutton or At-
wood. He wants to develop a theory to be applicable to the design of real bridges.
Therefore, after the theoretical parts on Strength of Materials and Theory of
Arches, he passed on to apply his theory to real cases. He first addresses his at-
tention to Telford’s design. His appreciation of the answers given by the experts
to the questions posed by the Select Committee, which he no doubt read with
great care, is unambiguous: “ . . . the results of these inquiries are not a little hu-
miliating to the admirers of abstract reasoning and of geometrical evidence; and
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it would be difficult to find a greater discordance in the most heterodox profes-
sions of faith, or in the most capricious variations of taste, than is exhibited in the
responses of our most celebrated professors, on almost every point submitted to
their consideration”. (225) Young must have considered a challenge to be able to
succeed where the most eminent professors, engineers and practitioners have
failed. However, his objective was not to exercise a bitter criticism; he saw in the
questions many fundamental aspects of bridge design and used them as line of
argument to direct the reader to the whole process of bridge design: “It would be
useless to dwell on the numerous errors with which many of the answers abound:
but the questions will afford us a very convenient clue for directing our attention
to such subjects of deliberation as are really likely to occur in a multiplicity of
cases; and it will perhaps be possible to find such answers for all of them, as will
tend to remove the greater number of the difficulties which have hitherto embar-
rassed the subject.”

In what follows we will examine only those answers directly relevant to arch
design and analysis. The complete, numbered, list of questions is given in the Ap-
pendix at the end of this paper.

What is structure? Arch or frame behaviour (Question I)

The design presented by Telford is very complex and Question I addresses the
first crucial stage in the structural analysis of any building construction: What
parts of the work form the structure? In particular, the question makes an explicit
division in two ways of structural behaviour: the “arch” (working in compression)
and the “frame” (with members either working in compression or in tension).

The answer of Young is extremely lucid. He argues first that the analyst has
some freedom in the way to consider the behaviour of the structure, but also that
the load tend to follow the paths formed by the more rigid parts of the structure:
“there is also a natural principle of adjustment, by which the resistance has a ten-
dency to be thrown where it can best be supported”. (225) Then follows a discus-
sion on the functioning of the several arch ribs which can be seen in the design.
He concludes that the transmission of the load concentrates in the lower ribs: the
upper, flatter, ribs which produce a greater thrust and an slight movement of the
buttress will relieve the load from them and transmit it to the lower ribs. It is, then,
the lower ribs which transmit the load and it is the lateral thrust produced by them
which governs the design, and not the strength of the material which constitutes
the arch. Also, the thrust will be less if the load is concentrated in the inferior ribs,
and all the circumstances contribute to that “natiral adjustment” cited above.

The arch transmits most of the load. The frame may contribute “affording a
partial resistance if required . . . . the principal part of the force ought to be con-
centrated int he lower ribs, not far remote from the intrados”. But he remarks
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again that the line of thrust, the curve of equilibrium, must not coincide with the
intrados (in fact this will produce an overstressing of the arch), nor have to be
parallel to it, as it has considered until then.

Finally he relates the nature of the material with the structural type: arches
work mainly in compression, and the utility of cast iron lies in his good compres-
sive strength and not in the possibility of connecting different members forming
a truss: “the true reason of the utility of cast iron for building bridges, consists
not, as has often been supposed, in its capability of being united so as to act like
a frame of carpentry, but in the great resistance which it seems to afford to any
force tending to crush it”.

Curve of equilibrium for dead load (Question 111)

Question III is formulated within the frame of the equilibration theory, in which
there is a direct relationship between the load and the form of the arch. To dis-
cuss the matter in depth, Young says; “would involve the whole theory of
bridges” (228) and that he will limit the discussion to the proposed structure, in
order to ascertain its strength and, if necessary, to suggest “any alterations . . .
compatible with the general outlines of the proposal, to remedy any imperfec-
tions which may be discoverable, in the arrangement of the pressure”. He is go-
ing, then, to make an analysis of the arch ribs, as forming the structure which
supports the whole weight of the bridge.

He begins stating that the equilibratipn theory does not afford a means to ana-
lyze the bridge as the distribution of the loads “differ so materially from that
which is required for producing an equilibrium in a circular arch of equable cur-
vature” and this has led some experts to consider the whole structure a frame or
truss (cf. Fig. 8, above).

Young insists again in what was his main contribution to arch theory, to free
the curve of equilibrium from the form of the arch and he states this with utmost
clarity: “The truth is, that it is by no means absolutely necessary, nor often per-
fectly practicable, that the mean curve of equilibrium should agree precisely in
its form with the curves limiting the external surfaces of the parts bearing the
pressure, especially when they are sufficiently extensive to admit of considerable
latitude within the limits of their substance”. (229) The arch requires a certain
thickness to contain with ease a curve of equilibrium, as its form does not coin-
cide with that of the arch; implicitly Young is here considering a geometrical fac-
tor of safety. The problem of the analysis is, then, “to determine the precise situa-
tion of the curve of equilibrium in the actual state of the bridge”. After this a
check should be made relating the safety of the joints “and if this security is not
deemed sufficient, the whole arrangement must be altered”.
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Now Young passes to apply the general Propositions on the equilibrium of
arches to analyze Telford’s design. He considered all the load concentred in a
“typical” plane arch rib of the dimensions stated in Telford’s design and supposes
that this load has a parabolic form w = a + bx% From an inspection of the general
form of the bridge (and, also probably from the estimations of the weights given
by some experts in the Fourth Report though he is not explicit about it) he con-
siders that the load is about three times greater in the abutments as in the crown.
Then, for x = 300 feet, w = 3a and 90,0005 = 24, so that b= (1/45,000)a. Substi-
tuting this values in equation (8) he obtains the equation of the curve of equili-
brium

- 2 1
my’= — ax*

-4

2" s40000 ©
there are two constants m (the horizontal thrust) and @ the height of the load at
the keystone. i

Young considers that the curve of equilibrium should pass through the middle
of the keystone and, also, through the middle of the vertical section at the spring-
ings. The circular arch of intrados is defined by the span (600 feet) and height
(65 feet), and this leads to a radius of 725 feet, with a total angle of aperture of
2 % 24.45°=48.9°. The arch of extrados can be deduced from the drawings in the
Fourth Report (Fig. 2, above):taking the middle of the extreme ribs, the thickness
at the keystone is 8 feet and at the springings 10. The vertical section at the
springings will be a little greater (by a factor (1.08 = 1/c0s(22.45°)), but disre-
garding this, vertical distance between the middle points of both vertical sections
will be 64 feet. Of course, Young does not explain all this and only says: “Now
the obliquity to the horizon being inconsiderable, this ordinate will not ultimately

Disance v, Vgredsineof  Veedsncofie  orgnaey,
50 1.73 1.71 1.34
100 6.94 6.52 5.38
150 15.66 15.43 13.00
200 28.18 27.70 24.50
250 44.42 43.81 41.01
300 65.00 64,00 64.00

Table 1
Ordinates of the intrados, the middle line of the arch and of the curve of equilibrium, cal-
culated by Young for Telford’s design for London Bridge (1817).
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be much less than the whole height of the arch; and its greatest value may be
called 64 feet”.

At the springings x = 300 and y = 64, and substituting in equation (9) we ob-
tain m/a = 937.5 feet, which is pretisely the radius of curvature of the curve of
equilibrium at the crown. (We may compare this value with the radius of the in-
trados of 725 feet.) Substituting this value again in equation (9) we obtain the ex-
pression of the curve of equilibrium:

1 2
Y= X

= : % 10
1875 1o

I+——x
270000

Now, Young calculates the ordinates at different points and makes a table to
compare the ordinates of the curve of equilibrium with those of the line of intra-
dos and with the middle line (the circle passing through the middle of the key-
stone and the vertical section at the springings), Table 1.

Young finds a maximum vertical distance of 3.20 feet (the radial distance be-
ing nearly 3 feet) between the middle line and the curve of equilibrium at 200
feet from the center, that is, only a little more than one feet apart from the border
and this will produce a great compression on this section: “. . . the curve of equi-
librium will rise more than 3 feet above its proper place; requiring a great pro-
portion of the pressure to be transferred to the upper ribs, with a considerable
loss of strength, for want of a communigcation approaching more nearly to the di-
rection of the curve”. (230) (In fact, if we displace the curve of equilibrium 1.6
feet downwards, this will be the maximum distance from the middle line, which
will be almost contained within the middle third of the section, as the vertical
thickness will be at this point 8.9 feet. This device is used later in the analysis of
Blackfriars bridge.)

Young finds the discordance between the form of the curve of equilibrium and
that of the arch excessive and says “it would, however, be much better to have the
arch somewhat elliptical in its form, if the load were of necessity such as has
been supposed”.

Internal forces in the arch, and thrust against the abutments (Question IV)

The question is, again, formulated within the frame of the equilibration theory. If
the curve of equilibrium has the form of the intrados then, knowing the load at
the keystone the thrust may be calculated directly, butYoung remarks that: “It ap-
pears from the preceding calculations. that the weight of the ‘middle section’
alone is not sufficient for determining the pressure in any part of the fabric . . .
(231) But if we know the expression of the curve of equilibrium we may calcu-
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late directly its radius of curvature » and the horizontal thrust is (eqn 9) m = ra,
being a the depth of the load at the crown; “and by combining this thrust with the
weight, or with the direction of the curve, the oblique thrust at any part of the
arch may be readily found”. (231)

Now Young gives a simple procedure to do this. For the case studied (para-
bolic load), the form of the curve is defined by the form of the load (the rela-
tion between « and b) and the points of passage of the curve. The value of ¢ re-
mains undefined. Young, now, set himself to obtain this value. To do this he
established the general equilibrium of the half arch: at the springings the thrust
must give a vertical component equal to the weight of the half arch, i. e., the
tangent of the curve of equilibrium must be equal to W/m, being ¥ the weight
of the half arch and m the horizontal thrust. At the abutments w = ¢ + by? = 3a,
so that bx? = 2a. o

Differentiating the general equation of the curve of equilibrium (eqn. 9, above) we

.dy a 1 b L dy 5 a 5 x
obtain i ;\ + 3 7,\, , and at the ?butments, bx?=2a, e x= P
For x =300 feet and r = 937.5 feet; dy/dx = 0.5333 = 8/15, nearly. Therefore, the
horizontal thrust at the abutments will be 15/16 of the total weight of the bridge.
Now, this weight was estimated by Robison in 10,000 tons (6,500 tons of cast
iron, plus the weight of the road), and the horizontal thrust will be m = 9470 tons.
The load at the keystone will be, then, a = m/r = 9470/937.5 or nearly 10 tons.
(The surface of the road over the bridge being nearly 18,000 square feet and the
total weight of the road 3,500 tons, the superficial load will be 0.20 tons/feet”,
which at the keystone, will lead to a total load 0.20 x 45 = 9 tons, the difference
being the weight of the ironwork on this place, which is plausible.)

3a ) a=10

e 9470
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Figure 9

Equilibrium of the arch ring of Telford’s design for a dead load of parabolic form. The
curve of equilibrium passes through the middle of the joints at the crown and abutments.
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Young notices that, though the thrust is greater than the calculated by the
equilibration theory applied at the crown (the radius of curvature of the curve of
equilibrium is greater than that of the intrados), it is less than will be expected
from the inclination of the intrados at the springings, 24°27" in comparison with
the inclination of the curve of equilibrium, atn(8/15) or 28°4'. Another proof of
the inconsistency of the old theory.

BLACKFRIARS BRIDGE: Now Young, comes back again to the matter of calculating
the curve of equilibrium and takes as an example Blackfriars Bridge, which was
considered then one of the best examples of stone bridge. The curve of intrados
has three centres (Fig. 10) and the radius of curvature of the central part (4/5 of
the span) is 56 feet. Young considers that the continuation of this arch will give
very nearly the distribution of the load-(the shaded curved triangle ABC in figure
10 is the difference).

Then we are in the case of a load determined by a horizontal extrados and a
circular intrados (eqn. 8, above). Now Young determines that the curve should
pass through the middle of the keystone, 3 feet above the intrados, and the mid-
dle of the vertical section at the springings, which he estimates in 12 feet. If the
height of the arch is 40 feet, the height of the curve of equilibrium will be
40 4+ 3 — 12 = 31 feet. The total thickness at the crown is 6.58 feet (6 feet of the
keystone plus 0.58 of the road). Therefore the load will be proportional to this
quantity and Young takes a = 6.58. Substituting in equation (9), we obtain my = m
31 = 13.510, and then m = 436 feet, 4 quantity proportional to the horizontal
thrust. The radius of curvature at the keystone is r = m/a = 66.25, i.e., as in
Telford’s design greater than the radius of the intrados.

Now he calculates the ordinates of the curve of equilibrium, for different val-
ues of x and also calculates the ordinates of the middle line of the arch, a circular
arc of cord 100 feet and height 31 feet (radius of 55.8 feet, almost the same as

Middle of the

Distance . Ordinate y. Arch-stones.
10 feet 76 90
2 3.12 3.72
25 5.13 6.12
30 7.71 8.75
40 15.81 16.81
50 31.00 . 8100

Table 2
Ordinates of the curve of equilibrium and the middle line of the arch in Blackfriars
Bridge. (Young 1817)
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Figure 10
Section of Blackfriars bridge with the curve of equilibrium calculated by Young drawn on
it by the author,

that of the intrados). He forms a Table to check the deviation of the curve of
equilibrium from the middle line, Table 2: “Hence it appears that the greatest de-
viation is about 30 feet from the middle, where it amounts to a little more than a
foot” (232) At this point, the radial deviation will be nearly 1.04 x 0.84 = (.88,
to be compared with a thickness of a little more than 6 feet.

Now Young makes one crucial comment. Until now the curve of equilibrium
have had to pass through the middle of the sections at the springings and the key-
stone. He proposes now to displace downwards the curve of equilibrium half of
the vertical distance, so that it will deviate the same quantity at the three critical
points: “But if we suppose this deviation divided by a partial displacement of the
curve at its extremities . . . it would be only about half as great in all three places;
and even this deviation will reduce the strength of the stones to two-thirds, leay-
ing them however still many times stonger than can ever be necessary.” Indeed,
for a deviation of 0.5 feet and a thickness of 6 feet, the mean stress will be multi-
plied by a factor (6 + 6 (0.5))/6 = 3/2 (eqn. (2), above), which Young interprets as
a reduction of 2/3 of the total strength of the section.

The calculated value of m represents a guantity proportional to the real
thrust: “. . . the horizontal thrust is here compressed by m = 436, implying the
weight of so many square feet of the longitudinal section of the bridge; while,
if we determined it from the curvature of the intrados, it would appear to be
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only 56a = 368". (The calculated thrust being almost 20% greater than the value
of the old equilibration theory.) If we call y the specific weight of the masonry
and / the breadth of the bridge, the total thrust will be 436(y7).

Young tries in this example to be very minute with every detail and passes to
discuss the influence of the direction of the joints and the consideration of the
different specific gravities of the materials, but concludes that “so minute a cal-
culation is not necessary in order to show the general distribution of the forces
concerned, and the sufficiency of the arrangement for answering all the purposes
intended”. (233)

Effect of an additional weight placed anywhere over the bridge (Question V)

This is the most difficult question to answer as it implies the analysis of an asym-
metrical load. Arch theory has been confined to symmetrical arches and loads
until the second half of the XIXth century. This constitutes, again, a challenge to
Young as there were no precedents of such an analysis. Young recognizes that a
weight placed on the arch will modify the form of the curve of equilibrium:
“When a weight is placed on any part of a bridge, the curve of equilibrium must
change its situation more or less, according to the magnitude of the weight”.
Now he affirms, maybe thinking in the analogy with an inverted frame polygon
that: “the tangent of its inclination must now be increased by a quantity propor-
tional to the additional pressure to be supported, which, if the weight were placed
in the middle of the arch, would always be' equal to half of it”. To estimate this
change of inclination the best way is to find the point where the new curve of
equilibrium (dead load plus the additional weight) is horizontal because in this
case “the vertical pressure to be supported at each point of the curve must obvi-
ously be equal to the weight of the materials interposed between it and this new
summit of the curve”. (233)

This last observation permits him to locate this point of horizontal thrust.
With reference to figure 11, where we have a bridge with a total weigth W which
supports an additional load Q located at a distance b from the nearest abutment.
Obviously, the vertical reactions will be that shown in the figure and the weight 7
of the load between the point of horizontal tangent and the keystone is (b/s)Q,
and therefore:

P_? 11
o s dn
Young express this relation as follows: “the distance of the new summit of the
curve from the middle must be such, that the weight of materials intercepted be-
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Figure 11
Calculation of the point of horizontal tangent in the curve of equilibrium distorted by the
action of an additional weight.

tween it and the middle shall be to the weight as the distance of the weight from
the end to the whole span” (234) and gives no demonstration.

Once this point is found “the tangent of the inclination must everywhere be
increased or diminished by the tangent of the angle at which the lateral thrust
would support the weight of this portion of the materials; except immediately un-
der the weight, where the two portions of the curve will meet in a finite angle, at
least if we suppose the weight tq be collected in a single point”.

Young explains the procedure applying it to Telford’s design: “If, for example,
a weight of 100 tons, equal to that of about 10 feet of the crown of the arch, be
placed half-way between the abutment and the middle; then the vertex of the
curve, where the thrust is horizontal, will be removed 2‘/2 feet towards the
weight” Applying the above formula (2/100) = (600/150) = 1/4, then, P = 100
tons, which considering the load uniform this distance, which is very nearly true,
is equivalent to the weight of 2,5 feet of the load at the crown (which was calcu-
lated before as 10 tons), and the horizontal thrust have been calculated as 937.5
feet of the same load. The objective is to deduce the new curve of equilibrium,
dead plus additional weight, transforming the curve of equilibrium for the dead
load. He explains the procedure in a synthetic way:

.. . so the tangent of the additional inclination will be 2.5/937.5 = 1/375, and each or-
dinate of the curve will be increased 1/375 of the absciss, reckoning from the place of
the weight to the remoter abutment; but between the weight and the nearest abutment,
the additional pressure at each point will be 10 — 2.5 = 7.5 feet, consequently the tan-
gent will be 1/125, and the additions to the ordinates at the abutments will be 450/375
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Figure 12 -
Graphical explanation of Young’s method of obtaining the curve of equilibrium for dead
plus additional weight, transforming the curve of equilibrium for dead load.

and 150/125, each equal to 1 (1/5) foot, and at the the summit 150/375 = 2/5, which.
being deducted, the true addition to the height of the curve will appear to be 4/5. But
the actual height will remain unaltered, since the curve is still supposed to be terminat-
ed by the [middle of the] abutments, and to pass through the middle of the key-stone;
and we have only to reduce all the ordinates in the proportion of 64.8 to 64.

The procedure is completely correct and shows a enormous ingenuity and
is based in the properties of the tangents of the sides of a funicular polygon.
figure 12 tries to explain the procedure graphically, with the aid of the force
poelygon.

Following the method it is very easy to calculate the ordinates of the new
curve of equilibrium and to study its deviation from the middle line. In Table 3
we have tabulated the results:

The additional weight is located at x = —150 feet from the crown. Young only
studies what he considers the critical points: the nearest point of the curve of
equilibrium of the dead load, at x = 200 feet, and the point directly under the
load. In the first case, « . . . at 200 feet from the summit the ordinate, instead of
24,50 + 200/375 = 25.03, will be 24.72, so that the curve will be brought 2fi
inches nearer to the intrados, which, in the proposed fabric, would by no means
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Table 3
Ordinates of different curves and their vertical distances from the middle line of the arch.
Origin at the middle point of the keystone: y,, middle line of the arch; y, curve of equilibri-
um for dead load; > curve of equilibrium dead plus point load.

diminish its strength” (the slight differences in the table are due to the rounding
of the calculations). In the second case, the disturbance is greater: « . . . immedi-
ately under the weight, the ordinate 13 — 150/375 = 12.6 will be reduced to
12.45, and the curve raised between six and seven inches, which is a change by
no means to be neglected in considering the resistances required from each part
of the structure”. (235) In fact, as may be seen in the Table 3, though the move-
ment of the second point is much greater, the distance of the curve of equilibrium
to the limit of the arch is almost the same. The greatest deviation is found 50 feet
nearer the abutment (x = -200) and is 3.54, equivalent to a radial deviation of 3.7
feet, in a place where the radial thickness is nearly 9 feet.
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Now, looking at Table 3 is evident that most of the curve of equilibrium is
over the middle line (only some 20 feet apart from the crown on the right side is
under it), so, to reduce the stresses Young may have been used the same proce-
dure applied in the analysis of Blackfriars bridge, to displace the line downwards
half the greatest distance, i. e. 3.54/2= 1.77. This will be the greatest deviation
and the curve of equilibrium will be comfortably within the middle half of the
section and only a little outside of the middle-third.

Finally, he stresses that the total thrust increases very little in comparison with
the thrust of the dead load only. The problem of the action of an addtional weight
is the distortion produced in the curve of equilibrium, not the increase on the
thrust.

Best form of the arch and dimensioning of its members (Question VII)

The question refers to the influence of the degree of surbaissement on the thrust
and internal stresses and also to the possible advantages of an elliptic profile.
Young asnwers to both questions but includes, also, a discussion on the strength
of materials and the possible sections of the main ribs.

To discuss the effect of an increase of the height of the arch some assumption
as to the variation of the load must be made; Young supposes that the weight re-
mains constant and it is evident that he is thinking in a vertical “stretching” of
the original form. In this case the vertical position of the center of gravity does
not change and the thrust will diminish in the same ratio as the height grows. A
change from 65 to 75 feet height will 'suppose to pass in the studied curve of
equilibrium from 64 to 73 and the thrust will be reduced from 9470 tons to 8300
tons. Being an affine transformation the value of the thrust diminishes, but the
relative deviation from the middle line will remain the same: “The additional
thrust occasioned by any foreign weight would also be lessened, but not the verti-
cal displacement of the curve derived from its pressure; and since the whole fab-
ric might safely be made somewhat lighter, the lightness would again diminish
the strain”. (236) This assertion is another proof of the deep grasp of Young on
the geometrical properties of the lines of thrust.®

Then Young discusses in some detail the problem of the strength of the mate-
rials and its role in the design of the main ribs of the arch. He considers that a
moderate value of the crushing strength of cast iron is about 50 ton./sq.in. [800
N/mm?]. The total oblique thrust is 10,730 tons which divided by 50 gives an
area of 215 inches and which he multiplies by three to obtain a section of 600
sq.in., which will suppose nearly as many tons of cast'iron in the ribs “upon this
very low estimate of the strength of cast iron.” (237)

In fact, to make cast iron work at one 1/3 of its strength 50/3=16.7 ton/square
inc, or 270 N/mny’, is by no means a “very low estimate”. Even for constructive
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reasons would have been impossible to divide this area between the thirteen ribs
of the design.

Skempton (1980) estimates from the drawings a section of 100 sq. inches per
rib, and that will mean 1300 sq. in., and the stress will be less than one half,
10730/1300 = 8.25 tons/sq.in [130 N/mm?] . However, Skempton notices the re-
duction of the strength for slender pieces, and comparing with stresses in con-
temporary buildings and bridges, considers an stress around 4.5 tons/sq.in. as ex-
ceptionally high (and that means a coefficient of 1/10 of the crushing strength!).
But Young is mainly concerned with supplying the internal forces in the arch.
(No doubt, would Telford’s design have been accepted, in situ tests of specimens
would have been made as was usual with any great iron construction. )

Now Young treats the case of stone bridges and discuss their limit spans:
“Calcareous freestone supports about a ton on a square inch [15 N/mm?], which
is equal to the weight of a column not quite 2000 feet [600 m] in height”. Young
is using here the parameter invented by Perronet and used by Gauthey (Huerta
2004) to measure the crushing strength of a material: the height of a column of
uniform section which just collapses at the base & , = 0,/y, where o is the crush-
ing strength and y the specific weight of the material. (The value of 2000 feet
seems very moderate and Rankine (1858) gives this figure for weak sandstone;
ordinary sandstone having a double strength and granite five times more, with
limit heights of 4000 and 10000 feet, or 1.2 and 3 km respectively.)

Then, he discusses the maximum span which can be attained by stone arches:
. consequently an arch of stch freestone, of 2000 feet radius, would be
crushed by its own weight only, without any further load”. In an arch of catenari-
an form, which supports its own weight the stress at the keystone is ¢ = ry, where
7 is the radius of curvature and the limit radius » = /4 , = 0./y. Therefore, “. . . for
an arch like that of a bridge, which has other materials to support, 200 feet is the
utmost radius that it has been thought prudent to attempt; although a part of the
bridge of Neuilly stands, cracked as it is, with a curvature of 250 feet radius; and
there is no doubt that a firm structure, well arranged in the beginning, might
safely be made much flatter than this, if there were any necessity for it”. Young is
exhibiting a great confidence in iron and distrust for masonry, an attitude which
will grow during the whole XIXth century, but which has no scientific basis.

As for the form of the arch, Young insists in the advantages of the elliptical

form, as it adapts itself better to the form of the curve of equilibrium.

113

Use of scale models (Questions VIII and IX) |

It is considered the kind of model to be used in ascertaining the safety of the de-
sign and of what size should be built. Young is very clear about the matter: hang-
ing models will permit to check the stability of the arch, but if the model tries to
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study the effect of “the cohesion or connection of the parts” the results will be
“extremely uncertain”.

Young explicits the mode in which the experiment should be made: “the parts
corresponding to the blocks of the arch should be formed of their proper thick-
ness and length, and connected with each other and with the abutments by a short
joint or hinge in the middle of each, allowing room for a slight degree of angular
motion only . . . [and] if the curve underwent no material alteration by the sus-
pension, we should be sure that the calculation was sufficiently correct”. If this is
not the case, “the arrangement of the materials might be altered”. He, then,
makes a suggestion to ease the use of the model: * . . . the investigation might be
facilitated by allowing the joints or hinges connecting the block to slide a little
along their surfaces, within such limits as would be allowable, without too great a
reduction of the powers of resistance of the blocks”.

There is no drawing, but the text may be interpreted as hanging block model.
The size of the blocks calculated in function of their respective weights and the
hinges located within the section of the arch and allowing a vertical displacement
within it. This interpretation has been repfesented in figure 13.

Figure 13
Hypothetical reconstruction of Young’s hanging-block model. The hinges can move verti-
cally within the ring of the arch,materializing different curves of equilibrium.

As for the size of the model, he states that it “4s of little importance, and it
would be unsafe to calculate the strength of the bridge from any general compari-
son with that of the mode]”.

Design and construction of the abutments (Question XI)

This is a most important question. Flat arches producé a great thrust and, besides,
the thrust has a considerable inclination, so that the danger of failure by sliding
must be considered. Young, apparently considers the preliminary design of
Telford as insufficient and makes a number of suggestions.
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Of course, the matter is heavily dependant on the nature of the soil. Young
cites the case of St. Saviour’s church, built nearby, as a proof of a soil of moder-
ate quality. Besides he considers that, if the foundation rests on piles the suffi-
cient degree of safety may be acquired.

Then proceeds to suggest the general disposition and dimensions of secure
abutments in the case of a soft soil, employing piles so that the total weight mo-
bilized to resist the thrust reach 100,000 tons, the main objective being to prevent
absolutely a failure by sliding: “When, indeed, the earth is extremely soft, it
would be advisable to unite it into one mass for a large extent, perhaps as far as
100 yards in every direction, for such a bridge as that under discussion, by beams
radiating from the abutments, resting on short piles, with cross pieces inter-
spersed; since we might combine, in this manner, the effect of g weight of
100,000 tons, which could-scarcely ever produce a lateral adhesion of less than
20,000, even if the materials were semifluid” (242)

Then, comments the proper direction of the joints of masonry within the but-
tress, a matter of enormous importance in the case of surbaissée arches: the ma-
sonry should be built with the joints normal to the direction of the line of thrust
within the buttress, Finally, he recommends that the piles at the base of the but-
tress should be driven following the direction of the thrust at the extreme of the
curve of equilibrium.

The design of the abutments proposed by Telford has been minutely examined
by Skempton (1 980). He estimates the weight of the abutments in 63000 tons and
calculates that the thrust at the Base is well inside the middle third and produces a
maximum pressure of 5 tons/sq.ft. [550 kN/m?]. But, Skempton makes a particu-
lar study of the differential settlement at the base of the abutments and gives a
table of its evolution. He estimates the final tilt, after the complete consolidation
of the soil, in 0.3°, leading to a total spreading of 4 inches. Skempton sees in this
a serious inconvenient and cites the case of Staines Bridge “which suffered se-
vere damage and had to be taken down, as the result of a 3 in. movement of one
of the abutments, Its span was 181 feet. Once again, then, we find a very uncom-
fortable feature in the design; especially when it is remembered that the rib
stresses would have been exceptionally high even without the vielding of the
abutments”, (Skempton 1980)

No doubt Skempton calculations of the inclination of the buttresses are cor-
rect, but it is difficult to believe that such a tiny movement of the abutments,
would have had such an enormous effect as it is supposed to have caused in
Staines Bridge. There the displacement was®3/(181 x 12) = 1/724 of the span,
which looks very moderate; but in London Bridge, it amounts to 1/1800 of the
span. The yielding of the buttresses would have produced the typical three-hinge
pattern, with a concentration of stress, but it appears that cast iron has sufficient
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compressive strength to withstand this effect, in the same way as stone arches
have made during centuries or millennia (for the calculation of cast iron arches,
see Heyman 1982). Young’s modifications would have reduced notably the value
calculated by Skempton.

“

Possible improvements and safety of the design (Questions XIX and XX)

The rest of the questions address mainly practical matters: the construction of the
scaffolding, the type of iron to be used, the possibility of casting the members
with sufficient precision, the size of the castings, the use of “iron cement”, etc.
However, questions XIX and XX imply a summary of the main arguments and
will be examined.

Young suggest to eliminate the upper flatter ribs and reinforce the lower ribs
forming the arch and, also, “made either in the form of blocks or of frames with
diagonals™ (245) (following presumably the model employed by Telford in his
iron bridges after Bonar Bridge). The profile of the ribs should adjust better to
the form of the curve of equilibrium.

Then he treats in some detail the problem of decentering, closely related with
the apparition of cracks and concentrations of stress: “It would be necessary to
wedge the whole structure very firmly together before the removal of the cen-
tres”, following a method similar as that employed for stone bridges and which is
intended “to enable the stones to bear fully on each other, and which has been
very properly adopted in the best modern works”. (All this precautions, If ading
to a certain pre-compression of the voussoirs, may lead to a diminution of the de-
scent of the crown. Another traditional’ dévice, which was applied to flat arches
and vaults, was to built the arch or vault with an initial stilt so that after deforma-
tion will take the desired profile.)

As for the feasibility of the design, Young expresses no doubt about it, and, in
fact, he has given the theory and practical calculation tools developments to
make all the necessary analysis and corrections of the original design. He insists,
again, that the main problem is in the design of the abutments: “The only reason-
able doubt relates to the abutments; and with the precautions which have been al-
ready mentioned in the answer to the [1th question, there would be no insupera-
ble difficulty in making the abutments sufficiently firm.”

Analysis of other “modern” bridges: Southwark and Waterloo Bridges

As has been mentioned in the version of the article “Bridge” printed in the Mis-
cellaneous papers, tha last section of the original artitle, with the title “Modern
History of Bridges”, was completely suppressed. In fact, only the first part of the
section is a brief history of the first iron bridges constructed. The second part
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Figure 14

Waterloo Bridge. The curve of equilibrium as been drawn on the right hand half arch. It is
the first time that a line of thrust is drawyn to explain the stability of a real bridge. (Young
1817)

contains the application of Young’s theory of the arch to the analysis of two im-
portant bridges: Southwark and Waterloo bridges. This suppression is a grave af-
fair as some parts of the article are difficult, if not impossible, to understand
without looking at the calculations made above the cited bridges. Also, the sec-
tion confirms the main objective of Young: to provide a theory of arches directly
applicable to the analysis and design of actual bridges. There is no space here to
discuss the ingenuity with which he applied his own theory to the analysis of real
bridges. But maybe a good manner to finish this paper is with, perhaps, the first
drawing of a line of thrust within an arch bridge, in figure 14,

Conclusions

1. Thomas Young has a deep understanding of the concept of “line of thrust”,
which he called curve of equilibrium. He formulated and employed this
concept nearly twenty years before other authors.

2. He was the first to free this curve from the “straitjacket” of the intrados, the
curve depending on the load distribution and expressing the infinite possi-
ble equilibrium situations in which an arch may transmit its loads.

3. For arches of stone or cast iron, materials with good compressive strength
but low tensile strength the curve of equilibrium must lie within the sub-
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stance of the arch, with some geometrical safety, i.e. the curve should not
approach too much to the borders.

Young obtained the general mathematical expression of the curve of equi-
librium for different types of loads (defined by the curves of intrados and
extrados), with a view to its application in Bridge analysis. His use of a
simple parabolic load is remarkable for its simplicity and applicablity in
most cases.

For the first time he considered the influence on the stability of the arch of
a point load placed anywhere on the extrados. He devised a completely
original method of obtaining the corresponding curve of equilibrium trans-
forming that of the dead load.

He had clear ideas of the transformation of curves of equilibrium (i.e. the
affinity between them) and knew, for example, that the thrust, for a certain
load distribution, is inversely proportional to the height of the curve, that
the relative vertical distances remain constant, etc.

Young’s theory of the arch, based on a correct application of the approach
of the equilibrium with due respect to the material properties, was well
ahead of his contemporaries. The analysis of unsymmetrical arches were
made only in the second half of the XIXth century. It apparently had no in-
fluence in later writers.

Young’s analysis of Telford’s design is completely correct, combining state-
ments of equilibrium (curves of equilibrium for the given loads) with state-
ments about the material (cast iron'must work in compression; therefore the
curve of equilibrium must lie within the arch). The notion of a geometrical
factor of safety is implicit in many of his statements.

Young’s approach is within the frame of modern limit analysis and of the
Fundamental Safe Theorem. The main corollary of this Theorem is the “ap-
proach of equilibrium” and this is precisely the procedure of Young, which
he followed with deep understanding.

Telford’s design, with some modifications, would have been a completely
safe structure. Would it have been built, it will be today a symbol of Lon-
don, in the same way as the Eiffel tower is a symbol of Paris. It is to regret
that ignorance, fear and parsimony stopped Telford’s grand design.

Appendix
Questions respecting the construction of a cast iron Bridge, of a single arch, 600 feet
in the span, and 65 feet rise.

I.

What parts of the bridge should be considered as wedges, which act on each other
by gravity and pressure, and what parts as weight, acting by gravity only, similar to
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the walls and other loading, usually erected upon the arches of stone bridges? Or
does the whole act as one frame of iron, which can only be destroyed by crushing
its parts?

Whether the strength of the arch is affected. and in what manner, by the proposed
increase of its width towards the two extremities or abutments, when considered
vertically and horizontally? And if so, what form should the bridge gradually ac-
quire?

In what proportion should the weigth be distributed from the centre to the abut-
ments, to make the arch uniformly strong?

What pressure will each part of the bridge receive, supposing it divided into any
given number of equal sections, the weight of the middle section being given? And
on what parts, and with what force, will the whole act upon the abutments?

What additional weight will the bridge sustain, and what will be the cffect of a giv-
en weight placed upon any'of the before-mentioned sections?

Supposing the bridge executed in the best manner, What horizontal force will it re-
quire, when applied to any particular part, to overturn it, or press it out of the verti-
cal plane? .

Supposing the span of the arch to remain the same, and to spring ten feet lower,
What additional strength would it give the bridge? Or, making the strength the
same, What saving may be made of the 1naterials? Or, if, instead of a circular arch,
as in the plates and drawings, the bridge should be made in the form of an elliptical
arch, What would be the difference in effect, as to strength, duration, convenience,
and expenses?

Is it necessary or advisable,to-have a model made of the proposed bridge, or any
part of it, in cast iron? If so, what are the objects to which the experiments should
be directed; to the equilibration only, or to the cohesion of the several parts, or to
both united, as they will occur in the intended bridge?

Of what size ought the model to be made, and what relative proportions will exper-
iments, made on the model, bear to the bridge when executed?

By what means may ships be best directed in the middle stream, or prevented from
driving to the side, and striking the arch; and what would be the consequence of
such a stroke?

The weight and lateral pressure of the bridge being given, can abutments be made
in the proposed situation for London Bridge, to resist that pressure?

The weight and lateral pressure of the bridge being given, can a centre or scaffold-
ing be erected over the river sufficient to carry the arch without obstructing the
vessels which at present navigate that part?

Whether would it be most advisable to make the bridge of cast and wrought iron
combined, or of cast iron only? And if of theYatter, Whether of the hard white met-
al, or of the soft grey metal, or of gun metal?

Of what dimensions ought the several members of the iron work work to be, to give
the bridge sufficient strength?
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Can frames of cast iron be made sufficiently correct to compose an arch of the
form and dimensions shown in the drawings, so as to take an egual bearing as onc
frame, the several parts being connected by diagonal braces, and joined by an iron
cement, or other substance?

Instead of casting the ribs in frames of considerable length and breadth, would it be
more advisable to cast each member of the ribs in separate pieces of considerable
lengths, connecting them together by diagonal braces, both horizontally and verti-
cally?

Can an iron cement be made, which shall become hard and durable, or can liquid
iron be poured into the joints?

Would lead be better to use in the whole or any part of the joints?

Can any improvements be made in the plan, so as to render it more substantial and
durable, and less expensive; And if so, what are these improvements?

Upon considering the whole circumstances of the case, agreable to the Resolutions
of the Committee, as stated at the conclusion of their Third Report, is it your opin-
ion that an arch of 600 feet in the span, as expressed in the drawings produced by
Messrs. Telford and Douglas, or the same plan, with any improvement you may be
so good as to point out, is practicable and-advisable, and capable of being made a
durable edifice?

Does the estimate, communicated herewith, according to your judgement, greatly
exceed or fall short of the probable expense of executing the plan proposed: speci-
fying the general grounds of your opinion?
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Notes

I. Though the project was signed by Telford and Douglass the credit for the design
should be given to Telford. Ruddock (1979, 158) affirms that . . . all the records con-
vey the impression that he himself made the designs and estimates for London Bridge
and that he conducted most of the subsequent investigations and negotiations”. For
Skempton (1980, 67) “. . . Douglass, though a clever and ambitious engineer. . ., had
no experience and probably little knowledge of bridges”.

2. The list, as it appears in the Fourth Report, is: Dr. Nevil Maskelyne (the Astronomer
Royal), Rev. A. Robertson (Savilian Professor of Geometry, Oxford), Playfair (Profes-
sor of Mathematics, Edinburgh), John Robison (Professor of Natural Philosophy, Ed-
inburgh), Dr. Milner, Dr. Charles Hutton (Royal Military Acadenty, Woolwich), Mr.
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Atwood, Colonel Twiss (Woolwich), Mr. William Jessop, Mr. I. Rennie, Mr. James
Watt, Mr. John Southern, Mr. William Reynolds, Mr. John Wilkinson, Mr. Charles
Bage, General Bentham (Inspector General of the Naval Works of the Admiralty), and
MrT. Wilson. .

- Young considered the article “Bridge” one of his major contributions to the Ency-
clopaedia Britannica. This is already evident in his correspondence with the editor
Napier (Wood and Oldham 1954, 259). But in the list of the 62 articles written for the
Encyclopaedia which he included in the catalogue of works of his own autobiography,
only three appear in capital letters, Bridge, Egypt and Tides (Hilts 1978, 259), as a sign
of their importance.

4. The exposition is very similar to the most important paper of Moseley (1838) on the
subject. Moseley formulated all his theory of lines of thrusts (/ines of resistances) as if
there was no precedent. He should have been aware of Young’s work.

5. The application of affine transformations to the study of the equilibrium of arches is a
powerful tool, which was- exploited extensively by Rankine (1858). For a historical
study of this approach see Huerta (2004, 407).

6. At the beginning of the XXth century several masonry bridges of more than 300 feet
were built; the greatest, in unreinforced concrete, at Cruseilles, 1928, with 140 m or
450 feet. (Huerta 2004, 407).

(5]
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